An approximate Dirac-type theorem for k -uniform hypergraphs
نویسندگان
چکیده
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every k ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges. Research supported by NSF grant DMS-0300529. Research supported by KBN grant 2 P03A 015 23 and N201036 32/2546. Part of research performed at Emory University, Atlanta. Research supported by NSF grant DMS-0100784
منابع مشابه
Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....
متن کاملRecent Advances on Dirac-type Problems for Hypergraphs
A fundamental question in graph theory is to establish conditions that ensure a graph contains certain spanning subgraphs. Two well-known examples are Tutte’s theorem on perfect matchings and Dirac’s theorem on Hamilton cycles. Generalizations of Dirac’s theorem, and related matching and packing problems for hypergraphs, have received much attention in recent years. New tools such as the absorb...
متن کاملA Dirac-type theorem for Hamilton Berge cycles in random hypergraphs
A Hamilton Berge cycle of a hypergraph on n vertices is an alternating sequence (v1, e1, v2, . . . , vn, en) of distinct vertices v1, . . . , vn and distinct hyperedges e1, . . . , en such that {v1, vn} ⊆ en and {vi, vi+1} ⊆ ei for every i ∈ [n − 1]. We prove a Dirac-type theorem for Hamilton Berge cycles in random r-uniform hypergraphs by showing that for every integer r ≥ 3 there exists k = k...
متن کاملThe Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree
We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n2−C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpiński, Ruciński and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 28 شماره
صفحات -
تاریخ انتشار 2008